References
[1]
V.
Schmutz, J. Brea, and W. Gerstner, “Convergence of redundancy-free
spiking neural networks to rate networks,” 2023 [Online].
Available: https://arxiv.org/abs/2303.05174
[2]
R.
Veltz and O. Faugeras, “Local/global analysis of the stationary
solutions of some neural field equations.” 2009 [Online].
Available: https://arxiv.org/abs/0910.2247
[3]
A.
Kharazishvili, Strange
Functions in Real
Analysis, 3rd ed. New York: Chapman; Hall/CRC,
2017.
[4]
H.
Sagan, Space-filling curves. New York: Springer-Verlag, 1994.
[5]
W.
Gerstner and J. L. van Hemmen, “Associative memory in a network of
’spiking’ neurons,” Network: Computation in Neural
Systems, vol. 3, no. 2, p. 139, May 1992, doi: 10.1088/0954-898X/3/2/004.
[Online]. Available: https://dx.doi.org/10.1088/0954-898X/3/2/004
[6]
M.
Beiran, A. Dubreuil, A. Valente, F. Mastrogiuseppe, and S. Ostojic,
“Shaping dynamics with multiple populations in
Low-Rank recurrent networks,” Neural
Comput, vol. 33, no. 6, pp. 1572–1615, May 2021.
[7]
“Operations on measures and
functions,” in Measure theory, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 175–248 [Online]. Available: https://doi.org/10.1007/978-3-540-34514-5_3
[8]
O.
Faugeras, F. Grimbert, and J.-J. Slotine, “Absolute stability and
complete synchronization in a class of neural fields models,”
SIAM Journal on applied mathematics, vol. 69, no. 1, pp.
205–250, 2008.
[9]
O.
Faugeras, R. Veltz, and F. Grimbert, “Persistent neural states:
Stationary localized activity patterns in nonlinear continuous
n-population, q-dimensional neural networks,” Neural
computation, vol. 21, no. 1, pp. 147–187, 2009.
[10]
C.
Stringer, M. Pachitariu, N. Steinmetz, M. Carandini, and K. D. Harris,
“High-dimensional geometry of population responses in visual
cortex,” Nature, vol. 571, no. 7765, pp. 361–365, Jul.
2019, doi: 10.1038/s41586-019-1346-5.
[Online]. Available: https://doi.org/10.1038/s41586-019-1346-5
[11]
Z.
Agathe-Nerine, “Multivariate hawkes processes on inhomogeneous
random graphs,” Stochastic Processes and their
Applications, vol. 152, pp. 86–148, 2022, doi: https://doi.org/10.1016/j.spa.2022.06.019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304414922001545
[12]
K.
Zhang, “Representation of spatial orientation by the intrinsic
dynamics of the head-direction cell ensemble: A theory,”
Journal of Neuroscience, vol. 16, no. 6, pp. 2112–2126, 1996.
[13]
J.
Patel, E. W. Schomburg, A. Berényi, S. Fujisawa, and G. Buzsáki,
“Local generation and propagation of ripples along the
septotemporal axis of the hippocampus,” Journal of
Neuroscience, vol. 33, no. 43, pp. 17029–17041, 2013.
[14]
J.
Patel, S. Fujisawa, A. Berényi, S. Royer, and G. Buzsáki,
“Traveling theta waves along the entire septotemporal axis of the
hippocampus,” Neuron, vol. 75, no. 3, pp. 410–417, 2012.
[15]
E.
V. Lubenov and A. G. Siapas, “Hippocampal theta oscillations are
travelling waves,” Nature, vol. 459, no. 7246, pp.
534–539, 2009.
[16]
D.
Rubino, K. A. Robbins, and N. G. Hatsopoulos, “Propagating waves
mediate information transfer in the motor cortex,” Nature
neuroscience, vol. 9, no. 12, pp. 1549–1557, 2006.
[17]
K.
Takahashi et al., “Large-scale spatiotemporal spike
patterning consistent with wave propagation in motor cortex,”
Nature communications, vol. 6, no. 1, p. 7169, 2015.
[18]
I.
Ferezou, S. Bolea, and C. C. Petersen, “Visualizing the cortical
representation of whisker touch: Voltage-sensitive dye imaging in freely
moving mice,” Neuron, vol. 50, no. 4, pp. 617–629, 2006.
[19]
C.
C. Petersen, T. T. Hahn, M. Mehta, A. Grinvald, and B. Sakmann,
“Interaction of sensory responses with spontaneous depolarization
in layer 2/3 barrel cortex,” Proceedings of the National
Academy of Sciences, vol. 100, no. 23, pp. 13638–13643, 2003.
[20]
L.
Muller, A. Reynaud, F. Chavane, and A. Destexhe, “The
stimulus-evoked population response in visual cortex of awake monkey is
a propagating wave,” Nature communications, vol. 5, no.
1, p. 3675, 2014.
[21]
L.
Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical
travelling waves: Mechanisms and computational principles,”
Nature Reviews Neuroscience, vol. 19, no. 5, pp. 255–268, 2018.
[22]
K.
Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional
imaging with cellular resolution reveals precise micro-architecture in
visual cortex,” Nature, vol. 433, no. 7026, pp. 597–603,
2005.
[23]
T.
K. Sato, I. Nauhaus, and M. Carandini, “Traveling waves in visual
cortex,” Neuron, vol. 75, no. 2, pp. 218–229, 2012.
[24]
P.
L. Nunez, “The brain wave equation: A model for the
EEG,” Mathematical Biosciences, vol. 21,
no. 3–4, pp. 279–297, 1974.
[25]
R.
Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky, “Theory of
orientation tuning in visual cortex.” Proceedings of the
National Academy of Sciences, vol. 92, no. 9, pp. 3844–3848, 1995.
[26]
S.
Bugeon et al., “A transcriptomic axis predicts state
modulation of cortical interneurons,” Nature, 2022.
[27]
D.
H. Hubel and T. N. Wiesel, “Receptive fields, binocular
interaction and functional architecture in the cat’s visual
cortex,” The Journal of physiology, vol. 160, no. 1, p.
106, 1962.
[28]
V.
B. Mountcastle, “Modality and topographic properties of single
neurons of cat’s somatic sensory cortex,” Journal of
neurophysiology, vol. 20, no. 4, pp. 408–434, 1957.
[29]
M.
Jazayeri and S. Ostojic, “Interpreting neural computations by
examining intrinsic and embedding dimensionality of neural
activity,” Current opinion in neurobiology, vol. 70, pp.
113–120, 2021.
[30]
D.
J. Amit, Modeling brain function: The world of attractor neural
networks. Cambridge university press, 1989.
[31]
M.
Dipoppa, A. Ranson, M. Krumin, M. Pachitariu, M. Carandini, and K. D.
Harris, “Vision and locomotion shape the interactions between
neuron types in mouse visual cortex,” Neuron, vol. 98,
no. 3, pp. 602–615, 2018.
[32]
P.-E. Jabin, D. Poyato, and J. Soler,
“Mean-field limit of non-exchangeable systems,” arXiv
preprint arXiv:2112.15406, 2021.
[33]
M.
Breakspear, “Dynamic models of large-scale brain activity,”
Nature neuroscience, vol. 20, no. 3, pp. 340–352, 2017.
[34]
S.
Amari, “Dynamics of pattern formation in lateral-inhibition type
neural fields,” Biological cybernetics, vol. 27, no. 2,
pp. 77–87, 1977.
[35]
H.
R. Wilson and J. D. Cowan, “A mathematical theory of the
functional dynamics of cortical and thalamic nervous tissue,”
Kybernetik, vol. 13, no. 2, pp. 55–80, 1973.
[36]
J.
Chevallier, A. Duarte, E. Löcherbach, and G. Ost, “Mean field
limits for nonlinear spatially extended hawkes processes with
exponential memory kernels,” Stochastic Processes and their
Applications, vol. 129, no. 1, pp. 1–27, 2019.
[37]
W.
Gerstner, “Time structure of the activity in neural network
models,” Phys. Rev. E, vol. 51, no. 1, p. 738, 1995.
[38]
W.
Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.