References

[1]
V. Schmutz, J. Brea, and W. Gerstner, “Convergence of redundancy-free spiking neural networks to rate networks,” 2023 [Online]. Available: https://arxiv.org/abs/2303.05174
[2]
R. Veltz and O. Faugeras, “Local/global analysis of the stationary solutions of some neural field equations.” 2009 [Online]. Available: https://arxiv.org/abs/0910.2247
[3]
A. Kharazishvili, Strange Functions in Real Analysis, 3rd ed. New York: Chapman; Hall/CRC, 2017.
[4]
H. Sagan, Space-filling curves. New York: Springer-Verlag, 1994.
[5]
W. Gerstner and J. L. van Hemmen, “Associative memory in a network of ’spiking’ neurons,” Network: Computation in Neural Systems, vol. 3, no. 2, p. 139, May 1992, doi: 10.1088/0954-898X/3/2/004. [Online]. Available: https://dx.doi.org/10.1088/0954-898X/3/2/004
[6]
M. Beiran, A. Dubreuil, A. Valente, F. Mastrogiuseppe, and S. Ostojic, “Shaping dynamics with multiple populations in Low-Rank recurrent networks,” Neural Comput, vol. 33, no. 6, pp. 1572–1615, May 2021.
[7]
“Operations on measures and functions,” in Measure theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 175–248 [Online]. Available: https://doi.org/10.1007/978-3-540-34514-5_3
[8]
O. Faugeras, F. Grimbert, and J.-J. Slotine, “Absolute stability and complete synchronization in a class of neural fields models,” SIAM Journal on applied mathematics, vol. 69, no. 1, pp. 205–250, 2008.
[9]
O. Faugeras, R. Veltz, and F. Grimbert, “Persistent neural states: Stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks,” Neural computation, vol. 21, no. 1, pp. 147–187, 2009.
[10]
C. Stringer, M. Pachitariu, N. Steinmetz, M. Carandini, and K. D. Harris, “High-dimensional geometry of population responses in visual cortex,” Nature, vol. 571, no. 7765, pp. 361–365, Jul. 2019, doi: 10.1038/s41586-019-1346-5. [Online]. Available: https://doi.org/10.1038/s41586-019-1346-5
[11]
Z. Agathe-Nerine, “Multivariate hawkes processes on inhomogeneous random graphs,” Stochastic Processes and their Applications, vol. 152, pp. 86–148, 2022, doi: https://doi.org/10.1016/j.spa.2022.06.019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304414922001545
[12]
K. Zhang, “Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory,” Journal of Neuroscience, vol. 16, no. 6, pp. 2112–2126, 1996.
[13]
J. Patel, E. W. Schomburg, A. Berényi, S. Fujisawa, and G. Buzsáki, “Local generation and propagation of ripples along the septotemporal axis of the hippocampus,” Journal of Neuroscience, vol. 33, no. 43, pp. 17029–17041, 2013.
[14]
J. Patel, S. Fujisawa, A. Berényi, S. Royer, and G. Buzsáki, “Traveling theta waves along the entire septotemporal axis of the hippocampus,” Neuron, vol. 75, no. 3, pp. 410–417, 2012.
[15]
E. V. Lubenov and A. G. Siapas, “Hippocampal theta oscillations are travelling waves,” Nature, vol. 459, no. 7246, pp. 534–539, 2009.
[16]
D. Rubino, K. A. Robbins, and N. G. Hatsopoulos, “Propagating waves mediate information transfer in the motor cortex,” Nature neuroscience, vol. 9, no. 12, pp. 1549–1557, 2006.
[17]
K. Takahashi et al., “Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex,” Nature communications, vol. 6, no. 1, p. 7169, 2015.
[18]
I. Ferezou, S. Bolea, and C. C. Petersen, “Visualizing the cortical representation of whisker touch: Voltage-sensitive dye imaging in freely moving mice,” Neuron, vol. 50, no. 4, pp. 617–629, 2006.
[19]
C. C. Petersen, T. T. Hahn, M. Mehta, A. Grinvald, and B. Sakmann, “Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex,” Proceedings of the National Academy of Sciences, vol. 100, no. 23, pp. 13638–13643, 2003.
[20]
L. Muller, A. Reynaud, F. Chavane, and A. Destexhe, “The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave,” Nature communications, vol. 5, no. 1, p. 3675, 2014.
[21]
L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski, “Cortical travelling waves: Mechanisms and computational principles,” Nature Reviews Neuroscience, vol. 19, no. 5, pp. 255–268, 2018.
[22]
K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature, vol. 433, no. 7026, pp. 597–603, 2005.
[23]
T. K. Sato, I. Nauhaus, and M. Carandini, “Traveling waves in visual cortex,” Neuron, vol. 75, no. 2, pp. 218–229, 2012.
[24]
P. L. Nunez, “The brain wave equation: A model for the EEG,” Mathematical Biosciences, vol. 21, no. 3–4, pp. 279–297, 1974.
[25]
R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky, “Theory of orientation tuning in visual cortex.” Proceedings of the National Academy of Sciences, vol. 92, no. 9, pp. 3844–3848, 1995.
[26]
S. Bugeon et al., “A transcriptomic axis predicts state modulation of cortical interneurons,” Nature, 2022.
[27]
D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, p. 106, 1962.
[28]
V. B. Mountcastle, “Modality and topographic properties of single neurons of cat’s somatic sensory cortex,” Journal of neurophysiology, vol. 20, no. 4, pp. 408–434, 1957.
[29]
M. Jazayeri and S. Ostojic, “Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity,” Current opinion in neurobiology, vol. 70, pp. 113–120, 2021.
[30]
D. J. Amit, Modeling brain function: The world of attractor neural networks. Cambridge university press, 1989.
[31]
M. Dipoppa, A. Ranson, M. Krumin, M. Pachitariu, M. Carandini, and K. D. Harris, “Vision and locomotion shape the interactions between neuron types in mouse visual cortex,” Neuron, vol. 98, no. 3, pp. 602–615, 2018.
[32]
P.-E. Jabin, D. Poyato, and J. Soler, “Mean-field limit of non-exchangeable systems,” arXiv preprint arXiv:2112.15406, 2021.
[33]
M. Breakspear, “Dynamic models of large-scale brain activity,” Nature neuroscience, vol. 20, no. 3, pp. 340–352, 2017.
[34]
S. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields,” Biological cybernetics, vol. 27, no. 2, pp. 77–87, 1977.
[35]
H. R. Wilson and J. D. Cowan, “A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue,” Kybernetik, vol. 13, no. 2, pp. 55–80, 1973.
[36]
J. Chevallier, A. Duarte, E. Löcherbach, and G. Ost, “Mean field limits for nonlinear spatially extended hawkes processes with exponential memory kernels,” Stochastic Processes and their Applications, vol. 129, no. 1, pp. 1–27, 2019.
[37]
W. Gerstner, “Time structure of the activity in neural network models,” Phys. Rev. E, vol. 51, no. 1, p. 738, 1995.
[38]
W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, 2014.